
ACT Math Formula Sheet

Rules of Exponents $x^m \cdot x^n = x^{m+n} \qquad \frac{x^m}{x^n} = x^{m-n}$ $(x^m)^n = x^{mn} \qquad x^0 = 1$ $\frac{x^n}{a^b} = \sqrt[b]{x^a} \qquad x^{-1} = \frac{1}{x} \qquad \frac{1}{x^{-1}} = x$ $4^{2x} = 8^{x+4} \text{ change to same base. Set}$ exponents equal to each other and solve	$\begin{array}{ll} \textbf{Logarithm/Exponential} \\ log_b x = y & b^y = x \ \ LOG = log_{10} \ ln = log_e \\ log mn = log m + log n \\ log \frac{m}{n} = log m - log n \\ log m^n = nlog m \\ \textbf{Imaginary Numbers} \\ i = \sqrt{-1} & i^2 = -1 \\ \hline \\ \textbf{Uniform Motion} \end{array}$	Sequences Arithmetic: $a_n=a_1+(n-1)d$ Geometric: $a_n=a_1\cdot r^{n-1}$ Arithmetic Sum: $S_n=\frac{n}{2}(2a_1+(n-1)d)$ Absolute value Equation $ x+5 =3$ $x+5=-3$ Statistics
Add/Sub: Add/Sub corresponding locations Multiply: Row of first times column of second Determinant $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - cb$ To multiply, number of columns of first matrix must equal number of rows of second matrix	Distance = rate x time Percent $\frac{part}{whole} = \frac{percent}{100} p\% \text{ of } x = \frac{p}{100}(x)$ Percent Change $\frac{amount \text{ of } change}{original \text{ amount}} \times 100\%$	$\label{eq:mean_sum} \begin{aligned} &\text{Mean} = \frac{sum}{count} \\ &\text{Mean of Frequency Distribution} \frac{\sum f \cdot x}{\sum f} \\ &\text{Median: Least to greatest. Middle term} \\ &\text{Mode: Number that appears the most} \\ &\text{Range: Highest minus lowest} \\ &\text{Standard Deviation: Measure of variation} \end{aligned}$
Probability $P(A) = \frac{Favorable\ Outcomes}{Total\ Possible\ Outcomes}$ $P(A\ or\ B) = P(A) + P(B) - P(A\ and\ B)$ $P(A\ and\ B) = P(A) \cdot P(B)$ Expected Value: $\sum x \cdot P(x)$ Counting Principle: m x n to do both things. Combination: $nCr = \frac{n!}{r!(n-r)!}$ Permutation: $nPr = \frac{n!}{(n-r)!}$ Sum of Probability Distribution = 1 Given: Reduces total possible outcomes	Functions $f(3)$ set x=3 and evaluate Domain: The complete set of x values Range: The complete set of y values Domain Restrictions: 1) division by zero 2) square root of negative number 3) Logarithm of zero or negative number Vertical Asymptote Located at x values that cause division by zero Horizontal Asymptote $\frac{x}{x^2}: y=0 \qquad \frac{ax^2}{bx^2}: y=\frac{a}{b} \qquad \frac{ax^2}{bx}: none/slant$	Composition of Functions $f(g(2))$ means to plug in 2 for x in the g(x) function then plug that result into the f(x) function $f(g(x))$ means to replace the x's in the f(x) with g(x) $f(g(x)) = 0$ means to find the x value that makes the composite function equal to zero
Function Translations $f(x) + c \text{shift up}$ $f(x) - c \text{shift down}$ $f(x + c) \text{shift left}$ $f(x - c) \text{shift right}$ $-f(x) \text{reflection about x axis}$ $f(-x) \text{reflection about y axis}$	Linear Functions $ \text{Slope} = \frac{y_2 - y_1}{x_2 - x_1} $ $ \text{Slope-Intercept Form: } y = mx + b $ $ \text{Distance Formula: } \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $ \text{Midpoint: } \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) $ $ \text{Parallel: Same Slope } $ $ \text{Perpendicular: Negative Reciprocal} $	Parabolas/Quadratics Standard Form: $y = ax^2 + bx + c$ Vertex Form: $y = a(x - h)^2 + k$ Intercept Form: $y = a(x - p)(x - q)$ Find vertex: $h = -\frac{b}{2a} k = f\left(-\frac{b}{2a}\right)$ If a positive, it's upward otherwise downward Sum of solutions $= -\frac{b}{a}$
Trig Functions $y = Asin(Bx) + D$ A = Amplitude $D = Vertical Shift$ $Period = \frac{2\pi}{B}$ $\pi \text{ radians} = 180^{\circ}$	Trig Identities $sin^{2}(\theta) + cos^{2}(\theta) = 1$ $tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \sin(\theta) = \cos(90 - \theta)$ $tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \cos(\theta) = \sin(90 - \theta)$ $sec(\theta) = \frac{1}{\cos(\theta)} \csc(\theta) = \frac{1}{\sin(\theta)}$	$\begin{aligned} & \mathbf{Quadratic\ Formula} \\ & x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ & \mathbf{Discriminant\ Rules} \\ & b^2 - 4ac > 0 \qquad \text{Two\ real\ roots} \\ & b^2 - 4ac = 0 \qquad \text{One\ real\ root} \\ & b^2 - 4ac < 0 \qquad \text{Two\ imaginary\ roots} \end{aligned}$
Binomial Expansion $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ Pascal's Triangle or Combination Circle Arc Circle Sector $\frac{x}{360} \cdot \text{Circumference}_{\text{where x = Central Angle}} \frac{x}{360} \cdot \text{Area}$	Geometry Midpoint: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ Isosceles Triangle: Two sides congruent and corresponding angles congruent Pythagorean Theorem: $a^2+b^2=c^2$ Pythagorean Triplets: 3-4-5, 6-8-10, 5-12-13 Triangle: Interior angles sum is 180	Perimeter Circle: $2\pi r = \pi d$ Area Rectangle: L x W Triangle: $\frac{1}{2}bh$ Triangle: $A = \frac{1}{2}absinC$ Circle: πr^2 Trapezoid: $\frac{1}{2}h(b_1 + b_2)$
 Parallelogram Properties Opposite sides parallel Opposite sides congruent Opposite angles congruent Consecutive angles add up to 180 Diagonals bisect one another 	$sine = \frac{opposite}{hypotenuse} cosine = \frac{adjacent}{hypotenuse}$ $tangent = \frac{opposite}{adjacent}$ $System of Linear Equations$ One Solution: Difference Slopes Multiple Solutions: Same slope and y-intercept	Special Right Triangles 30-60-90: $x, x\sqrt{3}, 2x$ 45-45-90: $x, x, x\sqrt{2}$ Circle: $(x-h)^2 + (y-k)^2 = r^2$ Ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ Law Of Sines: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

No Solutions: Same slope different y-intercepts

Website

www.j-digital.net

Facebook Group

ACT Exam Prep & Discussion

https://www.facebook.com/groups/445301233259536